A protein interaction network associated with asthma.
نویسندگان
چکیده
Identifying candidate genes related to complex diseases or traits and mapping their relationships require a system-level analysis at a cellular scale. The objective of the present study is to systematically analyze the complex effects of interrelated genes and provide a framework for revealing their relationships in association with a specific disease (asthma in this case). We observed that protein-protein interaction (PPI) networks associated with asthma have a power-law connectivity distribution as many other biological networks have. The hub nodes and skeleton substructure of the result network are consistent with the prior knowledge about asthma pathways, and also suggest unknown candidate target genes associated with asthma, including GNB2L1, BRCA1, CBL, and VAV1. In particular, GNB2L1 appears to play a very important role in the asthma network through frequent interactions with key proteins in cellular signaling. This network-based approach represents an alternative method for analyzing the complex effects of candidate genes associated with complex diseases and suggesting a list of gene drug targets. The full list of genes and the analysis details are available in the following online supplementary materials: http://biosoft.kaist.ac.kr:8080/resources/asthma_ppi.
منابع مشابه
Identification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks
Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملGene Regulation Network Based Analysis Associated with TGF-beta Stimulation in Lung Adenocarcinoma Cells
Background: Transforming growth factor (TGF)-β is over-expressed in a wide variety of cancers such as lung adenocarcinoma. TGF-β plays a major role in cancer progression through regulating cancer cell proliferation and remodeling of the tumor micro-environment. However, it is still a great challenge to explain the phenotypic effects caused by TGF-β stimulation and the effect of TGF-β stimulatio...
متن کاملAnalysis of Gene Expression, Signaling Pathways, and Interaction Networks of Some Effective Genes in Patients with Asthma in Microarray Studies Using R Software
Background and purpose: Asthma is a chronic inflammatory disorder of the airways caused by a combination of complex environmental and genetic interactions. There is an incomplete understanding of this mechanism which affect both severity of the disease and how it responds to treatment. Different gene expressions are reported in patients with asthma and healthy controls. Materials and methods:...
متن کاملPrediction of Coffee Effects in Rats with Healthy and NAFLD Conditions Based on Protein-Protein Interaction Network Analysis
Background and objectives: Non-alcoholic fatty liver disease (NAFLD) is a common liver condition. On the other hand, coffee consumption has shown promising for gastrointestinal diseases. Detection of the most valuable biomarkers of decaffeinated coffee treatment in healthy and non-alcoholic fatty liver disease conditions was the aim of the present study. Methods:</stro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 252 4 شماره
صفحات -
تاریخ انتشار 2008